Molecular Dynamics and Metadynamics Simulations of the Cellulase Cel48F
نویسنده
چکیده
Molecular dynamics (MD) and metadynamics techniques were used to study the cellulase Cel48F-sugar. Cellulase is enzyme that breaks cellulose fibers into small sugar units and is potentially useful in second generation alcohol production. In MD simulations, the overall structure of equilibrated Cel48F did not significantly change along the trajectory, retaining root mean square deviation below 0.15 nm. A set of 15 residues interacting with the sugar chains via hydrogen bonding throughout the simulation was observed. The free energy of dissociation (ΔGdiss.) of the chains in the catalytic tunnel of Cel48F was determined by metadynamics. The ΔGdiss. values of the chains entering and leaving the wild-type Cel48F cavity were 13.9 and 62.1 kcal/mol, respectively. We also mutated the E542 and Q543 to alanine residue and obtained ΔGdiss. of 41.8 and 45.9 kcal/mol, respectively. These mutations were found to facilitate smooth dissociation of the sugar chain across the Cel48F tunnel. At the entry of the Cel48F tunnel, three residues were mutated to alanine: T110, T213, and L274. Contrary to the T110A-Cel48F, the mutants T213-Cel48F and L274-Cel48F prevented the sugar chain from passing across the leaving site. The present results can be a guideline in mutagenesis studies to improve processing by Cel48F.
منابع مشابه
The issue of secretion in heterologous expression of Clostridium cellulolyticum cellulase-encoding genes in Clostridium acetobutylicum ATCC 824.
The genes encoding the cellulases Cel5A, Cel8C, Cel9E, Cel48F, Cel9G, and Cel9M from Clostridium cellulolyticum were cloned in the C. acetobutylicum expression vector pSOS952 under the control of a Gram-positive constitutive promoter. The DNA encoding the native leader peptide of the heterologous cellulases was maintained. The transformation of the solventogenic bacterium with the corresponding...
متن کاملGyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations
The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...
متن کاملEnergy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations
Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...
متن کاملSelf-interstitial clusters in radiation damage accumulation: coupled molecular dynamics and metadynamics simulations
Self-interstitial interactions causing volume expansion in bcc Fe are studied through an idealized microstructure evolution model in which only self-interstial atoms (SIAs) are inserted. Using a combination of non-equilibrium molecular dynamics simulations and a metadynamics algorithm, meta-stable SIA clusters are observed to nucleate and grow into dislocation loops or localized amorphous phase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014